1. Word2Vec
1.1 Word2Vec
Word2Vec은 단어 간 유사성을 고려하기 위해서 단어의 의미를 벡터화 한다.
위 사이트는 한국어로 Word2Vec 연산을 해볼 수 있는 사이트이다. 더하기, 빼기 연산을 테스트 해볼 수 있다.
한국-서울+도쿄 = 일본
신기하게도 단어가 갖고있는 의미들을 가지고 연산을 하고 있는 것처럼 보인다. 이러한 연산이 가능한 이유는 각 단어에 있는 어떤 상징성, 의미가 벡터로 계산되었기 때문이다.
Word2Vec에는 CBOW, Skip-Gram 두 가지 방식이 있는데 여기서는 Skip-Gram를 사용한다. 전반적으로 Skip-Gram이 CBOW보다 성능이 좋다.
Skip-Gram은 중심 단어에서 주변 단어를 예측하는 것이 목표이다.
1.2 Source Code
# Word2Vec 모델을 간단하게 구현해봅니다.
import tensorflow as tf
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
# matplot 에서 한글을 표시하기 위한 설정
font_name = matplotlib.font_manager.FontProperties(
fname="/Library/Fonts/NanumGothic.otf" # 한글 폰트 위치를 넣어주세요
).get_name()
matplotlib.rc('font', family=font_name)
# 단어 벡터를 분석해볼 임의의 문장들
sentences = ["나 고양이 좋다",
"나 강아지 좋다",
"나 동물 좋다",
"강아지 고양이 동물",
"여자친구 고양이 강아지 좋다",
"고양이 생선 우유 좋다",
"강아지 생선 싫다 우유 좋다",
"강아지 고양이 눈 좋다",
"나 여자친구 좋다",
"여자친구 나 싫다",
"여자친구 나 영화 책 음악 좋다",
"나 게임 만화 애니 좋다",
"고양이 강아지 싫다",
"강아지 고양이 좋다"]
# 문장을 전부 합친 후 공백으로 단어들을 나누고 고유한 단어들로 리스트를 만듭니다.
word_sequence = " ".join(sentences).split()
word_list = " ".join(sentences).split()
word_list = list(set(word_list))
# 문자열로 분석하는 것 보다, 숫자로 분석하는 것이 훨씬 용이하므로
# 리스트에서 문자들의 인덱스를 뽑아서 사용하기 위해,
# 이를 표현하기 위한 연관 배열과, 단어 리스트에서 단어를 참조 할 수 있는 인덱스 배열을 만듭합니다.
word_dict = {w: i for i, w in enumerate(word_list)}
# 윈도우 사이즈를 1 로 하는 skip-gram 모델을 만듭니다.
# 예) 나 게임 만화 애니 좋다
# -> ([나, 만화], 게임), ([게임, 애니], 만화), ([만화, 좋다], 애니)
# -> (게임, 나), (게임, 만화), (만화, 게임), (만화, 애니), (애니, 만화), (애니, 좋다)
skip_grams = []
for i in range(1, len(word_sequence) - 1):
# (context, target) : ([target index - 1, target index + 1], target)
# 스킵그램을 만든 후, 저장은 단어의 고유 번호(index)로 저장합니다
target = word_dict[word_sequence[i]]
context = [word_dict[word_sequence[i - 1]], word_dict[word_sequence[i + 1]]]
# (target, context[0]), (target, context[1])..
for w in context:
skip_grams.append([target, w])
# skip-gram 데이터에서 무작위로 데이터를 뽑아 입력값과 출력값의 배치 데이터를 생성하는 함수
def random_batch(data, size):
random_inputs = []
random_labels = []
random_index = np.random.choice(range(len(data)), size, replace=False)
for i in random_index:
random_inputs.append(data[i][0]) # target
random_labels.append([data[i][1]]) # context word
return random_inputs, random_labels
#########
# 옵션 설정
######
# 학습을 반복할 횟수
training_epoch = 300
# 학습률
learning_rate = 0.1
# 한 번에 학습할 데이터의 크기
batch_size = 20
# 단어 벡터를 구성할 임베딩 차원의 크기
# 이 예제에서는 x, y 그래프로 표현하기 쉽게 2 개의 값만 출력하도록 합니다.
embedding_size = 2
# word2vec 모델을 학습시키기 위한 nce_loss 함수에서 사용하기 위한 샘플링 크기
# batch_size 보다 작아야 합니다.
num_sampled = 15
# 총 단어 갯수
voc_size = len(word_list)
#########
# 신경망 모델 구성
######
inputs = tf.placeholder(tf.int32, shape=[batch_size])
# tf.nn.nce_loss 를 사용하려면 출력값을 이렇게 [batch_size, 1] 구성해야합니다.
labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
# word2vec 모델의 결과 값인 임베딩 벡터를 저장할 변수입니다.
# 총 단어 갯수와 임베딩 갯수를 크기로 하는 두 개의 차원을 갖습니다.
embeddings = tf.Variable(tf.random_uniform([voc_size, embedding_size], -1.0, 1.0))
# 임베딩 벡터의 차원에서 학습할 입력값에 대한 행들을 뽑아옵니다.
# 예) embeddings inputs selected
# [[1, 2, 3] -> [2, 3] -> [[2, 3, 4]
# [2, 3, 4] [3, 4, 5]]
# [3, 4, 5]
# [4, 5, 6]]
selected_embed = tf.nn.embedding_lookup(embeddings, inputs)
# nce_loss 함수에서 사용할 변수들을 정의합니다.
nce_weights = tf.Variable(tf.random_uniform([voc_size, embedding_size], -1.0, 1.0))
nce_biases = tf.Variable(tf.zeros([voc_size]))
# nce_loss 함수를 직접 구현하려면 매우 복잡하지만,
# 함수를 텐서플로우가 제공하므로 그냥 tf.nn.nce_loss 함수를 사용하기만 하면 됩니다.
loss = tf.reduce_mean(
tf.nn.nce_loss(nce_weights, nce_biases, labels, selected_embed, num_sampled, voc_size))
train_op = tf.train.AdamOptimizer(learning_rate).minimize(loss)
#########
# 신경망 모델 학습
######
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
for step in range(1, training_epoch + 1):
batch_inputs, batch_labels = random_batch(skip_grams, batch_size)
_, loss_val = sess.run([train_op, loss],
feed_dict={inputs: batch_inputs,
labels: batch_labels})
if step % 10 == 0:
print("loss at step ", step, ": ", loss_val)
# matplot 으로 출력하여 시각적으로 확인해보기 위해
# 임베딩 벡터의 결과 값을 계산하여 저장합니다.
# with 구문 안에서는 sess.run 대신 간단히 eval() 함수를 사용할 수 있습니다.
trained_embeddings = embeddings.eval()
#########
# 임베딩된 Word2Vec 결과 확인
# 결과는 해당 단어들이 얼마나 다른 단어와 인접해 있는지를 보여줍니다.
######
for i, label in enumerate(word_list):
x, y = trained_embeddings[i]
plt.scatter(x, y)
plt.annotate(label, xy=(x, y), xytext=(5, 2),
textcoords='offset points', ha='right', va='bottom')
plt.show()
Result:
Google Colab에서 테스트 해볼 수 있다.